ON PERIODIC COMPACT GROUPS

BY

E. I. ZELMANOV

Mathematical Institute, University of Oxford ~\$-~9 S~. Giles, Oxford OX13LB, England

ABSTRACT It is proved that a periodic pro-p-group is locally finite.

In [10] V. P. Platonov conjectured that periodic compact (Hausdorff) groups are locally finite. In other words the problem in question is the Burnside conjecture for compact groups. J. S. Wilson [15] proved that (under the assumption that there are finitely many finite simple sporadic groups) it suffices to prove the above conjecture for pro-p-groups. This is what we do in this paper.

THEOREM 1: *Every periodic pro-p-group is 1ocedly finite.*

From this theorem combined with [15] and with what is already known about locally finite groups ([2,6]) there follows

THEOREM 2: *Every infinite compact group contains an infinite abelian subgroup.*

We remark that as far as Theorem 2 is concerned the reduction to pro-p-groups in [15] didn't used the classification of finite simple groups.

All periodic compact groups are totally disconnected and thus pro-finite (cf. [3]). Hence V. P. Platonov's conjecture for groups of bounded exponent is equivalent to the so-called Restricted Burnside Problem (cf. $[9, 14]$).*

Let G be a periodic pro-p-group. Consider the closed subsets

$$
G_{(n)} = \{ g \in G \mid g^{p^n} = 1 \}, \quad G = U G_{(n)}.
$$

^{*} It is still not known whether **all** periodic compact groups are groups of bounded exponent.

Received January 4, 1991 and in revised form August 15, 1991

84 **E.I. ZELMANOV** Isr. J. Math.

By Baire's Category theorem (cf. [12]) one of the subsets $G_{(n)}$ contains some neighborhood, that is $G_{(n)} \supset gH$, where H is a normal subgroup of G of finite index. For an arbitrary element $h \in H$ we have

$$
(gh)^{p^n} = h^{g^{p^n-1}} h^{g^{p^n-2}} \cdots h^g h = 1 \qquad (T_{p^n})
$$

where $x^y = y^{-1}xy$. In order to prove that the group G is locally finite it is sufficient to prove that the subgroup H is locally finite. Let K be a finitely generated subgroup of H such that $K^g = K$. In the work [7] of E. I. Khukhro it is shown that the class of nilpotency of a finite p-group which satisfies the identity T_p is bounded from above by a function on p and the number of generators. Thus if $n = 1$, then for all open normal subgroups $H_1 \triangleleft G$ such that $H_1^g = H_1$ the nilpotency classes of $K/K \cap H_1$ are bounded from above. Hence K is nilpotent and finite (cf. [8]).

Unfortunately the class of nilpotency of a finite p-group satisfying $T_{p^n}, n > 1$, cannot be bounded from above by a function of $pⁿ$ and the number of generators (cf. [1]). Instead we prove the (rather complicated) Proposition 1 below and use it in the above arguments.

For arbitrary elements x, y of a group we denote by (x, y) their group commutator $x^{-1}y^{-1}xy$. Let G be a group with an automorphism σ such that $\sigma^{p^n} = \text{Id}$. For a finite subset $X = \{x_1, \ldots, x_k\} \subseteq G$ consider the set of commutators

$$
\tilde{X} = \{((\ldots(x_i, \underbrace{\sigma), \sigma}), \cdots, \underbrace{\sigma}, m < p^n, 1 \leq i \leq k\},
$$

where $(x, \sigma) = x^{-1}\sigma^{-1}x\sigma = x^{-1}x^{\sigma}$ for an arbitrary element $x \in G$. Denote by $O(X, n)$ the maximum of orders of all commutators on \tilde{X} of weight $\leq n$. Here by commutators on \tilde{X} we mean the elements which can be expressed from the elements of the set \tilde{X} by means of the operation of commutation.

PROPOSITION 1: *There exist a sequence of functions*

$$
h_2 \equiv 1, \quad h_i(k, m, t_2, \ldots, t_{i-1}), \quad 3 \leq i \leq n,
$$

and a function $F(k, m, t_2, \ldots, t_n)$ such that every finite p-group which has an automorphism σ with $\sigma^{p^n} = Id$, satisfies the property (T_{p^n}) and contains a finite subset $X = \{x_1, \ldots, x_k\}$ such that \tilde{X} generates G , is nilpotent of class \leq *S.O(X, S)* where $S = F(p^n \cdot k, p^n, t_2, \ldots, t_n)$, the t_i 's are defined inductively: $t_i = 2 \cdot O(X, h_i(p^n \cdot k, p^n, t_2, \ldots, t_{i-1})), 2 \leq i \leq n.$

The key to the proof of Proposition 1 lies in the theory of PI-algebras. It was shown by I. Kaplansky [5] that an associative nil algebra which satisfies a polynomial identity is locally nilpotent.

A. I. Shirshov ([13], cf. also [20]) improved this result in the following way:

Let A be an associative algebra which is generated by elements x_1, \ldots, x_k . Suppose that (1) A satisfies a polynomial identity of degree n , (2) every word in x_1,\ldots, x_n of length $\leq n$ is nilpotent. Then A is nilpotent.

In our papers [18, 19] on the Restricted Burnside Problem we proved the following Lie version of the above assertion:

Let L be a Lie algebra which is generated by elements x_1, \ldots, x_k . Suppose that: (1)L satisfies the polynomial identity $\Sigma[\ldots[y, x_{\sigma(1)}], \cdots, x_{\sigma(n)}] = 0, \sigma \in S_n;$ (2) there exists an integer $s \geq 1$ such that for any commutator ρ on x_1, \ldots, x_k we have

$$
[\cdots [L, \underbrace{\rho], \ldots, \rho}_{s}] = 0.
$$

Then L is nilpotent.

In this paper we strengthen this theorem in the spirit of A. I. Shirshov:

PROPOSITION 2: There exist a *sequence of functions*

$$
h_2\equiv 1,\quad h_i(r,n,t_2,\ldots,t_{i-1}),\quad 3\leq i\leq n,
$$

and a function $F(r, n, t_2, \ldots, t_n)$ such that each Lie algebra L

(1) which is generated by elements x_1, \ldots, x_r ;

(2) *which satisfies the identity*

$$
\Sigma[\cdots[y, x_{\sigma(1)}], \ldots, x_{\sigma(n)}] = 0, \qquad \sigma \in S_n; \text{ and}
$$

(3) for every commutator ρ on x_1, \ldots, x_r of weight $\leq h_i(r, n, t_2, \ldots, t_{i-1})$ the operator $ad(\rho) : x \to [x, \rho]$ is nilpotent of degree $\leq t_i, i = 2, \ldots, n$, *is nilpotent of class* $\leq F(r, n, t_2, \ldots, t_n)$.

The proof is based on the following difficult theorem from [18, 19].

THEOREM ([18, 19]): *A Lie algebra which satisfies the Enge1's identity*

$$
[\cdots [y, \underbrace{x}, \ldots, x] = 0
$$

is locally nilpotent.

The reduction to the theorem above closely follows that in [17] but we outline it for the benefit of the reader.

Consider the ordered alphabet $X = \{x_1, \ldots, x_k\}$; $x_i > x_j$ for $i > j$, and assume the set of all associative words on X to be partially ordered via the lexicographical ordering. Consider also the free associative algebra $\text{Ass}[X]$ on the set of generators X. Recall that an element h of the algebra $Ass[X]$ is called a commutator if h can be expressed from elements of the set X by means of the operation of commutation $[x, y] = xy - yx$. We shall call an associative word u from elements of the set X special if there exists a commutator $[u]$ for which the leading term is the word u. For example, the word $x_3x_1x_2x_2x_1$ is special because it is the leading term in the commutator $[[x_3, x_1], [[x_2, x_1], x_2]].$

We call an associative word w *n*-partitionable if it can be represented in the form $w = w_0 u_1 w_1 \cdots u_n w_n$ where u_i are special words and for any nonidentical permutation $\sigma \in S_n$

$$
w > w_0 u_{\sigma(1)} w_1 \cdots u_{\sigma(n)} w_n.
$$

In [17] we proved the following analog of the celebrated A. I. Shirshov's *N(k, s, n)* lemma (cf. [13, 20]).

LEMMA 1 ([17]): For *arbitrary positive integers k,n,m* there *exists an integer* $H(k, n, m)$ such that any word w on X of length $H(k, n, m)$ either contains a subword u^m , *u* being special, or is *n*-partitionable.

Now we keep proving analogs of A. I. Shirshov's lemmas, this time it will be [20, lemma 4 on p. 101].

LEMMA 2: Let w be an associative word of length $\geq 2^{n-1}(n-2)!$ which is not *representable in the form* v^t *, where v is a proper subword of the word w. Then the word* w^{2n} *is n-partitionable.*

Proof. Since w is not a power of a proper subword it involves more than one letter. Let us assume that x_k is the highest letter which occurs in w. Following A. I. Shirshov we call a word v x_k -indecomposable if $v = x_k \cdots x_k x_{i_1} \cdots x_{i_n}$,

 $s \geq 1$, $i_t \neq k$ for $t = 1, \ldots, s$. In the set T of all x_k -indecomposable words we define the linear order: $\alpha > \beta$; $\alpha, \beta \in T$, if either $\alpha > \beta$ lexicographically or α is the beginning of β . Words in the alphabet T are called T-words. Say that two words have the same composition if each letter occurs in them the same number of times. Let T-words α, β be of the same composition in the alphabet T. It is easy to see that if α is lexicographically greater than β in the alphabet T, then α is lexicographically greater than β also in the alphabet X. In particular, a special T-word with respect to T is special also with respect to X .

Let us prove the lemma by induction on n. If $n = 2$ and the word w is not 2-partitionable itself, then $w = x_{i_1} \cdots x_{i_t}$, $i_1 \leq \cdots \leq i_t$, $i_1 < i_t$. Now

$$
w^{2}=(x_{i_{1}}\cdots x_{i_{t-1}})x_{i_{t}}x_{i_{1}}(x_{i_{2}}\cdots x_{i_{t}})
$$

is the 2-partition of w^2 . Since w contains x_k there exists a cyclic permutation of the word w which turns it into the T-word v. Clearly v^{2n-1} is a subword of w^{2n} . Let

$$
v=x_k^{i_1}v_1x_k^{i_2}v_2\cdots x_k^{i_k}v_t,
$$

where $i_1, \ldots, i_t \geq 1$ and v_1, \ldots, v_t are the words on x_1, \ldots, x_{k-1} . Suppose that some power $i_{\alpha,1} \leq \alpha \leq t$, is not less than $n-1$. Then $v = v'x_k^{n-1}x_jv'', j < k$. Let $u_1 = x_k^{n-1} x_j, u_2 = x_k^{n-2} x_j, \ldots, u_{n-1} = x_k x_j, u_n = x_j$. Now

$$
v^{n} = v' u_{1}(v''v'x_{k}) u_{2}(v''v'x_{k}^{2}) u_{3} \cdots u_{n}v''
$$

is the *n*-partition of v^n which implies that v^{2n-1} and w^{2n} are also *n*-partitionable.

Suppose that the length of some word v_{α} is not less than $n - 1$. Then $v = v'x_kx_{j_1}\cdots x_{j_{n-1}}v''$, where $1 \leq j_1,\ldots,j_{n-1} \leq k-1$. Let $u_1 = v_k, u_2 =$ $x_k x_{j_1}, \ldots, u_n = k_k x_{j_1} \cdots x_{j_{n-1}}$. Again

$$
v^{n} = v'u_{1}(x_{j_{1}} \cdots x_{j_{n-1}} v''v')u_{2}(x_{j_{2}} \cdots x_{j_{n-1}} v''v')u_{3} \cdots u_{n}v''
$$

is the n-partition.

Now we may assume that $1 \leq i_1, \ldots, i_t \leq n-2$ and the length of each v_{σ} is $\leq n-2$. Hence

$$
t\geq 2^{n-2}(n-3)!
$$

By the induction assumption the word v^{2n-2} is $(n-1)$ -partitionable. Let v^{2n-2} = $w_0u_1w_1u_2\cdots w_{n-1}$ be the $(n-1)$ -partition, let $v = v'x_j$, $j < k$, and denote $u_n = x_j$. Then

$$
v^{2n-1} = w_0 u_1 w_1 u_2 \cdots w_{n-2} u_{n-1} (w_{n-1} v') u_n
$$

is the *n*-partition of v^{2n-1} . This proves the lemma.

LEMMA 3: Any word w on X which is not representable in the form v^t , where v *is a proper subword of the word w, can be turned into a special word by a cyclic* $permutation.$

Proof: We shall prove the lemma by induction on the length of w. Let x_k be the highest letter which occurs in w . Then, as we have remarked earlier, some cyclic permutation turns w into a T-word w'. The T-length of w' is less than the X-length of w' so it remains to use the induction assumption.

LEMMA 4: For arbitrary integers $k, n, m \geq 1$ there exists an integer $H'(k, n, m)$ such that every word w on X of length $H'(k,n,m)$ either contains a subword u^m , *u* being special of length $\lt 2^{n-1}(n-2)$, or *is n*-partitionable.

Proof: Let $H'(k, n, m) = H(k, n, s)$, where $s = \max(m, 2n) + 1$. Let w be a word on X of length $H'(k, n, m)$. We assume that w is not *n*-partitionable. Then by Lemma 1 w contains a subword u^s . Let $u = v^t$ when the word v is not a power of its proper subword. Remark that though by Lemma 1 the word u might be assumed to be special, we cannot assume that about the word v . By Lemma 2 the length of v is less than $2^{n-1}(n-2)!$. Now from Lemma 3 it follows that some cyclic permutation turns v into a special word v'. Clearly v'^{s-1} is a subword of the word v^s . Since $s - 1 \ge m$ we conclude that the word v'^m is a subword of the word w which finishes the proof.

LEMMA 5 ([17]): Let A be an associative algebra and let L be a subalgebra of *the commutator Lie algebra* $A^{(-)}$. *Suppose that: (1) A is generated by L; (2) L is generated by m elements* x_1, \ldots, x_m ; (3) L satisfies the Engel's identity

$$
[\cdots [y,\underbrace{x},\ldots,x]_{n}]=0;
$$

(4) for arbitrary element $a \in L$ *we have* $a^n = 0$. Then A is nilpotent.

Clearly there exists an upper bound for the nilpotency degrees of algebras A with these properties. Denote it by $g(m, n)$.

Proof of Proposition 2: We shall use induction on $q, 1 \leq q \leq n$, to construct a sequence of functions $h_2 \equiv 1, h_i(r, n, t_2, \ldots, t_{i-1}), 3 \le i \le n$, and to prove the following assertion:

Let L be a Lie algebra which is generated by the subset $X = \{x_1, \ldots, x_r\} \leq L$ and A an associative algebra such that the commutator Lie algebra $A^{(-)}$ contains L and A is generated by L . Assume further that:

(a) L satisfies the linearized Engel's identity

$$
\Sigma[\cdots[x, y_{\sigma(1)}], \ldots, y_{\sigma(n)}] = 0, \quad \sigma \in S_n;
$$

(b) for arbitrary elements $a_1, \ldots, a_q \in L$ we have

$$
\Sigma a_{\sigma_1}\cdots a_{\sigma_q}=0, \quad \sigma\in S_q;
$$

(c) for an arbitrary commutator ρ on X of length $\leq h_i(r, n, t_2, \ldots, t_{i-1})$ we have

$$
\rho^{t_i}=0, \quad 2\leq i\leq q.
$$

Then A is nilpotent.

For $q = 2$ it follows from (b) that for arbitrary $x, y \in L$ we have $xy + yx = 0$. The condition (c) implies $x_i^{t_2} = 0, 1 \le i \le r$ (indeed, $h_2 \equiv 1$). Hence A is nilpotent of degree $\leq (t_2 - 1)r + 1$.

Now let us assume that the functions $h_2, \ldots, h_{q-1}(r, n, t_2, \ldots, t_{q-2})$ have been constructed. By induction there exists a function $d_{q-1}(r, n, t_2, \ldots, t_{q-1})$ such that any associative algebra satisfying the above conditions with parameters r, n, q - $1, t_2, \ldots, t_{q-1}$ is nilpotent of degree $\leq d_{q-1}(r, n, t_2, \ldots, t_{q-1})$. The rest of the proof follows [17] almost verbatim.

Let $k = g(r^d, n)$, where $d = d_{q-1}(r, n, t_2, \ldots, t_{q-1})$. Define

$$
h_q(r, n, t_2, \ldots, t_{q-1}) = 2^{k-1}(k-2)!
$$

We shall show that any associative algebra A satisfying (a) , (b) , (c) with the parameters $r, n, q, t_2, \ldots, t_q$ is nilpotent of degree $\leq N = H'(r, k, t_q)$. If $A^N \neq 0$ then A contains a word w on X of length N such that w is not a linear combination of words which are lexicographically less than w . By Lemma 4 either w contains a subword u^{t_q} , u being special of length $\leq 2^{k-1}(k-2)!$, or w is k-partitionable. Let us consider the first case and let u be the highest word in the commutator [u] on X; the weight of u is $\leq 2^{k-1}(k-2)!$. By the assumption (c), $[u]^{t_q} = 0$, hence u^{t_i} is the linear combination of words which are lexicographically less than u^t and so is the word w.

Now let us suppose that $w = w_0u_1w_1 \cdots u_kw_k, u_i$ is the highest word in the commutator $[u_i]$ on X and for any nonidentical permutation $\sigma \in S_k$ we have $w > w_0 u_{\sigma_{(1)}} w_1 \cdots u_{\sigma_{(k)}} w_k.$

Let P be the ground field, consider the associative P -algebra E presented by generators $e_i, i \geq 1$, and relations $e_i^2 = 0$, $e_i e_j = e_j e_i$, $1 \leq i, j \leq k$, $\hat{E} = E + P.1$. Consider the tensor product $A \oplus_P \hat{E}$ and the element

$$
u=\sum_{i=1}^k [u_i]\otimes e_i\in A\otimes_P \hat{E}.
$$

We shall prove that $(uA)^k = 0$ and thus $w_0uw_1u \cdots uw_k = 0$. This contradicts what we have assumed about w.

By the choice of d any word α on X of length $\geq d$ can be presented as

$$
\alpha = \sum_i \alpha_i \left(\sum_{\sigma \in S_{q-1}} \alpha_{i\sigma(1)} \cdots \alpha_{i\sigma(q_1)} \right),
$$

where the α_{ij} are commutators on X and the α_i are words on X.

Suppose that there exist such words v_1, \ldots, v_{k-1} on X that

$$
uv_1uv_2\cdots uv_{k-1}u\neq 0.
$$

The sequence v_1, \ldots, v_{k-1} may be assumed to have a lexicographically minimal vector of length (d_1, \ldots, d_{k-1}) among all sequences of words which satisfy (2). From the lexicographical minimality and (1) it follows that $d_i \leq d-1$ for all $i, 1 \le i \le k$. For a word $v = x_{i_1} \cdots x_{i_r}$ denote by [vu] the commutator $[x_{i_1}, [x_{i_2}, [\cdots [x_{i_e}, u]] \cdots]$. Again by the lexicographical minimality of (d_1,\ldots, d_{k-1}) we have

$$
uv_1u\cdots uv_{k-1}u=u[v_1u][v_3u]\cdots[v_{k-1}u]\neq 0.
$$

Now remark that the Lie algebra $L \otimes_{P} E$ satisfies the *n*-Engel's identity and, besides, for an arbitrary element $a \in L \otimes_P E \subseteq A \otimes_P E$, we have $a^q = a^n = 0$. There are not more than r^d distinct elements among $u, [v_i, u] \in L \otimes_{P} E$. Hence by Lemma 5 and by the choice of k we have $u[v_1u] \cdots [v_{k-1}u] = 0$, a contradiction.

Now let a Lie algebra L satisfy the conditions of Proposition 2. Then the Lie algebra $ad(L)$, together with the associative algebra $R(L)$ which is generated by

 $ad(L)$ in End_p (L) , satisfy the assumptions (a), (b), (c). Clearly, the class of nilpotency of L is bounded by a function $F(r, n, t_2, \ldots, t_n)$. This finishes the proof of Proposition 2.

Now let G be a finite p-group with an automorphism φ such that $\varphi^{p^n} = \text{Id}$ and for an arbitrary element $a \in G$ we have $a^{\varphi^{p^{n}-1}} \cdots a^{\varphi} a = 1$. Assume further that G contains a subset $X = \{x_1, \ldots, x_k\}$ such that the set

$$
\tilde{X} = \{x_i, (\cdots(x_i, \varphi), \ldots, \varphi), 1 \leq j \leq p^n - 1, 1 \leq i \leq k\}
$$

generates G.

For a commutator ρ on x_1,\ldots,x_k,φ denote by $w_x(\rho),w_\varphi(\rho)$ the weights of ρ with respect to X and φ respectively, so $w_x(\rho) + w_{\varphi}(\rho)$ is the weight of the commutator ρ .

Let us consider the Cartesian product of integers $Z^2 = \{(i,j)\}\$ with the lexicographical order: $(i, j) > (k, \ell)$ whenever $i > k$ or $i = k, j > \ell$. For an arbitrary pair (i, j) let G_{ij} be the subgroup of G which is generated by all commutators ρ on X, φ such that $(w_x(\rho), w_{\varphi}(\rho)) > (i, j)$ and by all powers ρ^{p^k} such that $(p^kw_x(\rho),p^kw_\varphi(\rho))\geq (i,j).$ Clearly $G_\alpha\subseteq G_\beta$ for $\beta<\alpha$ and $(G_\alpha,G_\beta)\subseteq G_{\alpha+\beta}$ for arbitrary $\alpha, \beta \in \mathbb{Z}^2$.

For $\alpha \in \mathbb{Z}^2$ denote by \tilde{G}_{α} the subgroup of G generated by all G_{β} 's such that $\beta > \alpha$. Abelian factors $G_{\alpha}/\tilde{G}_{\alpha}$ may be viewed as linear spaces over the finite field Z_p , $|Z_p| = p$. Following [4, 11, 16] we consider the direct sum

$$
L(G) = \underset{\alpha \in Z^2}{\oplus} G_{\alpha}/\tilde{G}_{\alpha}.
$$

Brackets $[a_{\alpha}\tilde{G}_{\alpha},b_{\beta}\tilde{G}_{\beta}] = (a_{\alpha},b_{\beta})\tilde{G}_{\alpha+\beta}$, where $a_{\alpha} \in G_{\alpha},b_{\beta} \in G_{\beta}$, define the structure of a Lie algebra on *L(G).*

LEMMA 6:

(a) The Lie algebra $L(G)$ satisfies the polynomial identity

 $\Sigma[\cdots[y,x_{\sigma(1)}],\ldots,x_{\sigma(p^n)}]=0, \quad \sigma\in S_{p^n};$

(b) If $a \in G_\alpha$, $a^{p^t} = 1$, $b = a\tilde{G}_\alpha \in L(G)$ then

$$
[\cdots [L(G),\underbrace{b],\ldots,b}_{2p^t}]=0.
$$

Proof: (a) Consider the free group \tilde{F} on the free generators y, x_0, x_1, \ldots and the normal closure \tilde{F}_x of the generators $x_0, x_1,...$ in \tilde{F} . Let H be the normal closure of the set $\{y^{p^n}, a^{y^{p^{n}-1}} \cdots a^y a, a \in \tilde{F}_x\}$. Denote $F \simeq \tilde{F}/H, F_x = \tilde{F}_x H/H$. By abuse of notation we shall keep denoting the cosets yH, x_iH by y, x_i respectively. Denote by C the normal closure of the element x_0 in F: C is generated by x_0 and all commutators containing x_0 . Consider also the subgroup $(C, C)_p$ of C generated by commutators (a, b) and powers a^p and a, b are arbitrary elements of C. The abelian group $V = C/(C, C)_p$ is a linear space over Z_p . For an arbitrary element $x \in F$ denote by x' the linear transformation of V induced by commutation with $x, x' : a(C, C)_p \rightarrow (a, x)(C, C)$. From the well-known commutator formula $(z, xy) = (z, y)(z, x)(z, x, y)$ it follows that for arbitrary elements $x, y \in F$ we have $(xy)' = x' \circ y'$ where $a \circ b = a + b + ab$. Clearly

(3)
$$
(x^{p^{n}})' = x'^{p^{n}} = (1+x)^{'p^{n}} - 1 = x'^{p^{n}}.
$$

For an arbitrary element $x \in F_x$ we have $(yx)^{p^n} = 1$, which implies

(2)
\n
$$
0 = ((yx_1 \cdots x_{p^n})^{p^n})' = (y' \circ x'_1 \circ \cdots \circ x'_{p^n})^{p^n}
$$
\n
$$
= [(1 + y') \cdots (1 + x'_{p^n}) - 1]^{p^n}.
$$

Let us expand the right side as the sum of monomials in the y', x'_i . By putting $x_1 = 1$ (thus $x'_1 = 0$) we see that the sum of all monomials which don't contain x'_1 is zero. Hence the sum of all monomials which do contain x'_1 is also zero. Then in the latter sum we put $x_2 = 1$ and so on. As a result we get that the sum of all monomials containing each of x'_1,\ldots,x'_{p^n} is zero. The lowest degree component of that sum is

$$
\sum_{\sigma \in S_{p^n}} x'_{\sigma(1)} \cdots x'_{\sigma(p^n)}.
$$

Thus we proved that

(3)
$$
\prod_{\sigma \in S_{p^n}} (\cdots (x_0, \ldots, x_{\sigma(p^n)}) = \rho_1 \cdots \rho_u,
$$

where the ρ_i are either commutators on y, x_0, \ldots, x_{p^n} which involve x_0 at least twice, or p-th powers of commutators involving x_0 , or commutators of degree $\geq p^n + 2$ involving each of x_0, \ldots, x_{p^n} .

In the same way as before (put $x_1 = 1$, then put $x_2 = 1$ and so on) we may assume all ρ_1, \ldots, ρ_u involve each of the generators x_0, \ldots, x_{p^n} . Now the assertion (a) immediately follows from (5).

(b) From (1) it follows that

(4)
$$
(\cdots(x_0,\underline{x_1}),\ldots,x_1)=(x_0,x_1^{p^t})\rho_1\cdots\rho_i,
$$

where the ρ_j are either commutators on x_0, x_1 which involves x_0 at least twice, or p-th powers of commutators involving x_0 , or commutators of degree $\geq p^t + 2$. Now it suffices to put

$$
(\cdots(x_0,\underbrace{x_1),\ldots,x_1}_{p^t})
$$

instead of x_0 in (4) to finish the proof of the lemma.

Now let

$$
t_2 = 2 \cdot O(X, 1), \quad t_3 = 2 \cdot O(X, h_3(kp^n, p^n, t_2)), \quad t_4 = 2 \cdot O(X, h_4(kp^n, p^n, t_2, t_3))
$$

$$
\cdots, \quad t_n = 2 \cdot O(X, h_n(kp^n, p^n, t_2, \dots, t_{n-1})).
$$

By Proposition 2 the subalgebra of $L(G)$ generated by \tilde{X} is nilpotent of degree $\leq s = F(kp^n, p^n, t_2, \ldots, t_n)$. Let us show that the group G is nilpotent of class $\leq s \cdot O(X, s)$. To do that we shall prove that for any commutator ρ on \tilde{X} we have $\rho^{p^m} = 1$ whenever $p^m w_x(\rho) > s \cdot O(X, s)$.

Since G is nilpotent it follows that if the pair $(p^m w_x(\rho), p^m w_{\sigma}(\rho))$ is big enough then $\rho^{p^m} = 1$. Now if $w_x(\rho) < s$ then ρ is the commutator on \tilde{X} of weight $\langle s \rangle$ whereas $p^m > 0(\tilde{X}, s)$, so $\rho^{p^m} = 1$. If $w_x(\rho) \geq s$ then ρ^{p^m} is a product of elements $\rho_i^{p^{m_i}}$, the ρ_i being commutators on \tilde{X} and

$$
(p^{m_i}w_x(\rho_i), p^{m_i}w_{\sigma(p_i)}) > (p^mw_x(\rho), p^mw_{\sigma}(\rho)).
$$

Thus $\rho^{p^m} = 1$ and Proposition 1 is proved.

Proof of Theorem l: As we have already remarked in the beginning of the paper there exist a normal subgroup H of G of finite index, an element $g \in G$ and an integer $n \geq 1$ such that for an arbitrary element $h \in H$ we have

$$
(gh)^{p^n} = h^{g^{p^{n}-1}}h^{g^{p^n-2}}\cdots h^gh = 1.
$$

Let $X = \{x_1, \ldots, x_k\}$ be an arbitrary finite subset of H,

$$
\tilde{X} = \{x_i, ((\cdots (x_i, g), \underbrace{g), \ldots, g}_{j}), 1 \leq j \leq p^n - 1, 1, \leq i \leq k\}.
$$

Since G is periodic we may consider

$$
t_2 = 2 \cdot O(X, 1), \qquad t_3 = 2 \cdot O(X, h_3(kp^n, p^n m, t_2)),
$$

$$
\cdots, \quad t_n = 2 \cdot O(X, h_n(kp^n, p^n, t_2, \cdots, t_{n-1})).
$$

Let $s = F(k \cdot p^n, p^n, t_2, \dots, t_n)$ and consider also $0(X, s)$. Denote by K the subgroup of H generated by \tilde{X} . From Proposition 1 it follows that for an arbitrary normal subgroup $H_1 \triangleleft G$ of finite index such that $H_1^g = H_1$, the quotient group $K/K \cap H_1$ is nilpotent of class $\leq s \cdot 0(X, s)$. Hence K is nilpotent of class $\leq s \cdot 0(X, s)$ and finite. We proved that the subgroup H is locally finite which implies that the group G is locally finite as well.

ACKNOWLEDGEMENT: The author is grateful to Aner Shalev whose important remarks led to many revisions in the text.

References

- 1. D. Gorenstein, Finite *Groups,* Harper & Row, New York, 1968.
- 2. P. Hall and C. R. Kulatilaka, *A property of locally finite groups,* J. London Math. Soc. 39 (1964), 235-239.
- 3. E. Hewitt and K. Ross, *Abstract Harmonic Analysis,* Vol. II, Springer-Verlag, New York, Berlin, 1970•
- 4. S. A. Jennings, *The structure* of the *group ring of a p-group over a modular field,* Trans. Am. Math. Soc. 50 (1941), 175-185.
- 5. I. Kaplansky, *Rings with apolynomial identity,* Bull. Am. Math. Soc. 54 (1948), 575-580.
- 6. M. I. Kargapolov, *On a problem* of O. Ju. *Smldt,* Siber. Math. 2. 4 (1963), 232-235.
- 7. E. I. Khukhro, *On locally nilpotent groups admitting a splitting automorphism of prime order,* Mat. Sb. 180, No. 1 (1986), 120-127.
- 8. E. I. Khukhro, *A comment on periodic compact groups,* Siber. Math. J. 30, No. 3 (1989), 187-190.
- 9. A. I. Kostrikin, *Around Burnside,* Nauka, Moscow, 1986.
- 10. *Kourovka Notebook* (unsolved problems in Group Theory), 9th ed., Inst. Mat. SO AN SSSR, Novosibirsk, 1984.
- 11. W. Magnus, *A connection between the Baker-Hausdorff formula and a problem of Burnside,* Ann. Math. 52 (1950), 11-26; *Errata,* Ann Math. 57 (1953), 606.
- 12. W. Rudin, *Functional Analysis,* McGraw-Hill, New York, 1973.
- 13. A. I. Shirshov, On *rings with identical relations,* Mat. Sb. 43 (1957), 277-283.
- 14. M. Vaughan-Lee, The *Restricted Burnside's Problem,* Oxford University Press, 1990.
- 15. J. S. Wilson, *On the structure of compact torsion groups,* Monatsch. Math. 96 (1983), 57-66.
- 16. H. Zassenhaus, *Ein Verfahren* jeder *endlichen p-gruppe einem Lie-Ring mit der characteristic p zu zuordnem,* Abh. Mat. Sem. Univ. Hamburg 18 (1940), 200-207.
- 17. E. I. Zelmanov, *On some problems in the theory of groups and Lie algebras,* Mat. Sb. 180, No. 2 (1989), 159-167.
- 18. E. I. Zelmanov, *Solution of the restricted Burnside's problem for groups of odd exponent, Izvestia AN SSSR 54 (1990).*
- 19. E. I Zelmanov, *Solution of the restricted Burnside's problem for 2-groups,* Mat. Sb., to appear.
- 20. K. A. Zevtakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings *That* Are *Nearly Associative,* Academic Press, New York, 1982.