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ABSTRACT 

It is proved tha t  a periodic p r o - ~ g r o u p  is locally finite. 

In [10] V. P. Platonov conjectured that periodic compact (Hausdorff) groups are 

locally finite. In other words the problem in question is the Burnside conjecture 

for compact groups. J. S. Wilson [15] proved that (under the assumption that 

there are finitely many finite simple sporadic groups) it suffices to prove the above 

conjecture for pro-p-groups. This is what we do in this paper. 

THEOREM 1: Every periodic pro-p-group is 1ocedly finite. 

From this theorem combined with [15] and with what is already known about 

locally finite groups ([2,6]) there follows 

THEOREM 2: Every infinite compact group contains an infinite abe//an subgroup. 

We remark that as far as Theorem 2 is concerned the reduction to pro-p-groups 

in [15] didn't used the classification of finite simple groups. 

All periodic compact groups are totally disconnected and thus pro-finite (cf. 

[3]). Hence V. P. Platonov's conjecture for groups of bounded exponent is equiv- 

alent to the so-called Restricted Burnside Problem (el. [9, 14]).* 

Let G be a periodic pro-p-group. Consider the closed subsets 

G(. )  = {g 6 G I g p" = 1},  G = UG(.). 

* It is still not known whether all periodic compact groups are groups of bounded 
exponent. 
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By Baire's Category theorem (cf. [12]) one of the subsets G(n) contains some 

neighborhood, that is G(,,) 3 gH, where H is a normal subgroup of G of finite 

index. For an arbitrary element h E H we have 

(gh) f = h u'"-' hut"- ' . . ,  huh = 1 (Tp.) 

where xY = y - l z y .  In order to prove that the group G is locally finite it is 

sufficient to prove that the subgroup H is locally finite. Let K be a finitely 

generated subgroup of H such that Kg = K.  In the work [7] of E. I. Khukhro it 

is shown that the class of nilpotency of a finite p-group which satisfies the identity 

Tp is bounded from above by a function on p and the number of generators. Thus 

if n = 1, then for all open normal subgroups H1 ,~ G such that H i = H1 the 

nilpotency classes of K / K  D H1 are bounded from above. Hence K is nilpotent 

and finite (cf. [8]). 

Unfortunately the class of nilpotency of a finite p-group satisfying Tp,, n > 1, 

cannot be bounded from above by a function of pn and the number of generators 

(cf. [1]). Instead we prove the (rather complicated) Proposition 1 below and use 

it in the above arguments. 

For arbitrary elements z, y of a group we denote by (x, y) their group commu- 

tator z - l y - l z y .  Let G be a group with an automorphism a such that a f = Id. 

For a finite subset X = {Zl , . . . ,  x/~} C_ G consider the set of commutators 

= < p " , l  < i < k} ,  
Y 

111  

where (z,a) = z - l a - l x a  = z-~x ~" for an arbitrary element x E G. Denote by 

O(X, n) the maximum of orders of all commutators on ,l~ of weight < n. Here 

by commutators on .Y we mean the elements which can be expressed from the 

elements of the set )( by means of the operation of commutation. 

PROPOSITION 1: There exist a sequence of functions 

h2=1,  hi(k,m, t2, . . . , t i -1) ,  3 < i < n ,  

and a function F(k ,m,  t2,.. .  , tn) such that every £mite p-group which has an 

automorphism a with aP" = Id, satis~es the property (Tp.) and contains a 

tlnite subset X = { z l , . . . , x k  } such that )( generates G, is nilpotent of c/ass 
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< S.O(X, S) where S = F(p n.  k,p", t2 , . . . ,  tn), the ti's are defined inductively: 

ti = 2. O(X, hi(p n. k ,pn, t2 , . . .  , t i -1)) ,2 < i < n. 

The key to the proof of Proposition 1 lies in the theory of PI-algebras. It 

was shown by I. Kaplansky [5] that an associative nil algebra which satisfies a 

polynomial identity is locally nilpotent. 

A. I. Shirshov ([13], el. also [20]) improved this result in the following way: 

Let A be an associative algebra which is generated by elements z l , . . . ,  xk. 

Suppose that (1) A satisfies a polynomial identity of degree n, (2) every word in 

x l , . . . ,  z ,  of length _ n is nilpotent. Then A is nilpotent. 

In our papers [18, 19] on the Restricted Burnside Problem we proved the 

following Lie version of the above assertion: 

Let L be a Lie algebra which is generated by elements Xl , . . . ,  $t~. Suppose that: 

(1)L satisfies the polynomial identity ~[ . . .  [y, za(1) ] , ' " ,  z~(,,)] = 0, a E S,,; (2) 

there exists an integer s > 1 such that for any commutator p on x l , . . . , x ~  we 

h a v e  

[...[L,g],.:.,p!= 0. 
8 

Then L is nilpotent. 

In this paper we strengthen this theorem in the spirit of A. I. Shirshov: 

PROPOSITION 2: There exist a sequence of functions 

h 2 - 1 ,  hi(r,n, t2 , . . . , t i -1 ) ,  3 < i < n ,  

and a function F(r,n,  t2 , . . .  , t , )  such that each Lie a/gebra L 

(1) which is generated by elements x l , . . . ,  zr; 

(2) which satisfies the identity 

~"~'[""" [Y, Xa(1 ) ] , ' ' ' ,  Xo'(n)] = O, O" ~ '~'n; a n d  

(3) for every commutator p on x l , . . .  , zr  o[ weight <_ hi(r,n, t2 , . . . , t i_1)  the 

operator ad(p) : z ~ [x, p] is nilpotent of degree _< ti, i = 2 , . . . ,  n, 

is nilpotent of class <_ F(r,n,  t2 , . . .  ,tn). 

The proof is based on the following difficult theorem from [18, 19]. 
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THEOREM ([18, 19]): A Lie algebra which satisfies the Enge1's iden t i ty  

[ . .[y,x], . . . ,x!= 0 
n 

is locally nilpotent .  

The reduction to the theorem above closely follows that in [17] but we outline 

it for the benefit of the reader. 

Consider the ordered alphabet X = {x l , . . . , xk} ;  xi  > x i for i > j ,  and 

assume the set of all associative words on X to be partially ordered via the 

lexicographical ordering. Consider also the free associative algebra Ass[X] on 

the set of generators X. Recall that an element h of the algebra Ass[X] is called 

a c o m m u t a t o r  if h can be expressed from elements of the set X by means of 

the operation of commutation Ix, y] = x y  - yx.  We shall call an associative word 

u from elements of the set X special  if there exists a commutator [u] for which 

the leading term is the word u. For example, the word x3x lx2x2Xl  is special 

because it is the leading term in the commutator [[xa, Xl], [[x2, xl], x2]]. 

We call an associative word w n -pa r t i t i onab le  if it can be represented in the 

form w = w o u l w l  " ' 'UnWn where ui are special words and for any nonidentical 

permutation a E S~ 

w > WoU~O)wl "''U~,(n)Wn. 

In [17] we proved the following analog of the celebrated A. I. Shirshov's N ( k ,  s, n)-  

lemma (cf. [13, 201). 

LEMMA 1 ([17]): For arbitrary posi t ive  integers k , n , m  there exists  an integer 

H ( k ,  n, m )  such that any word w on X o f  length H ( k ,  n, m )  ei ther contains a 

subword urn, u being special, or is n-partit ionable.  

Now we keep proving analogs of A. I. Shirshov's lemmas, this time it will be 

[20, lemma 4 on p. 101]. 

LEMMA 2: Let  w be an associative word o f  length >_ 2n- l (n  - 2)! which is not  

representable in the form v t, where v is a proper subword of the word w. Then  

~he word w 2n is n-par~itionable. 

Proof." Since w is not a power of a proper subword it involves more than one 

letter. Let us assume that  xk is the highest letter which occurs in w. Following 

A. I. Shirshov we call a word v zk - indecomposab le  if v = x k " ' z k z i ~  " ' x i , ,  
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s >_ 1, it  ~ k for t = 1 , . . . , s .  In the set T of all xk-indecomposable words we 

define the linear order:  o~ >/3 ;  o~,/3 E T, if either o~ > /3  lexicographically or  a is 

the beginning of/3. Words in the alphabet  T are called T-words.  Say tha t  two 

words have the same composit ion if each letter occurs in them the same number  

of times. Let T-words (~,fl be of the same composit ion in the a lphabet  T. It is 

easy to see tha t  if (~ is lexicographically greater  than  13 in the a lphabet  T, then 

a is lexicographically greater  t h a n / 3  also in the a lphabet  X.  In particular,  a 

special T-word  with respect to T is special also with respect to X.  

Let us prove the l emma by induct ion on n. If  n = 2 and  the word w is not  

2-part i t ionable itself, then w = xil "'" z i , ,  i l  <( " ' "  <_ i t ,  i l  < it .  Now 

W 2 = ( X i l ' ' ' X i t _ I ) X i ,  X i l ( X i 2 " ' ' X i , )  

is the 2-part i t ion of  w 2. Since w contains zk there exists a cyclic pe rmuta t ion  of 

the word w which turns  it into the T-word v. Clearly v 2"-1 is a subword of  w 2". 

Let 

where i a , . . . , i t  >_ 1 and v l , . . . , v t  are the words on x l , . . . , x k - 1 .  Suppose tha t  

some power ia ,1  < a < t, is not  less than  n - 1. Then  v = v l x ~ - l x j v " , j  < k .  
n--1 n--2 Let II 1 = Z k X j , I I  2 = X k X j , , . .  , U , _  1 ~-- XkX, j , U n  = X j .  N o w  

I t l  I t t  l I t  

v" = u l (v  ,, xk)Il (  x )Il3 . . . I I . v  

is the n-par t i t ion  of v" which implies tha t  v 2"-1 and w 2" are also n-part i t ionable.  

Suppose tha t  the length of some word v~ is not  less than  n - 1. Then  

v = v ' x k z j l  . . .  x i . _ I  v " ,  where 1 _< j l , . . . , j n - 1  _< k - 1. Let ua = v k , u 2  = 

x k x j , , . . . ,  u ,  = k k x i l  . . .  x i . _  , . Again 

I t  I IS l I I  
= , ) u 3 . . . u . v  

is the n-part i t ion.  

Now we may  assume that  1 <_ i l , . . . , i t  _< n - 2 and the length of each v= is 

< n - 2. Hence 

t _> 2 " - 2 ( n  - 3 ) ! .  

By the induct ion assumpt ion the word v 2n-2 is (n -1 ) -pa r t i t i onab le .  Let v 2"-2 = 

w o u l w l u 2 " " w , - ~  be the (n - 1)-partition, let v = v%1,  j < k, and denote 

u ,  = x j .  Then  

V 2 n - 1  : W0UlWlI I2 . . .Wn_2Un_I (Wn_IUI )Un  
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is the n-parti t ion of V 2n-1. This proves the lemma. | 

LEMMA 3: Any  word w on X which is not representable in the form v t, where v 

is a proper subword of the word w, can be turned into a special word by a cyclic 

permu ration. 

Proof: We shall prove the lemma by induction on the length of w. Let xk be 

the highest letter which occurs in w. Then, as we have remarked earlier, some 

cyclic permutat ion turns w into a T-word w ~. The T-length of w ~ is less than the 

X-length of w ~ so it remains to use the induction assumption. 

LEMMA 4: For arbitrary integers k, n, m > 1 there exists an integer H~(k, n, m) 

such that every word w on X of length H l ( k , n , m )  either contains a subword 

u m, u being special of length < 2n- l (n  - 2)!, or is n-partitionable. 

Proof: Let H ' (k ,  n, m)  = H(k ,  n, s), where s = max(m,  2n)-F 1. Let w be a word 

on X of length Hr(k, n, m). We assume that w is not n-partitionable. Then by 

Lemma 1 w contains a subword u s. Let u = v t when the word v is not a power 

of its proper subword. Remark that  though by Lemma 1 the word u might be 

assumed to be special, we cannot assume that  about the word v. By Lemma 2 

the length of v is less than 2 " - 1 ( n -  2)!. Now from Lemma 3 it follows that  some 

cyclic permutat ion turns v into a special word v ~. Clearly v Is-1 is a subword of 

the word v s. Since s - 1 > m we conclude that  the word v Im is a subword of the 

word w which finishes the proof. 

LEMMA 5 ([17]): Let A be an associative aigebra and let L be a subedgebra of 

the commutator Lie a/gebra A (-).  Suppose that: ( I )  A is generated by L; (2) L 

is generated by ra elements z l , .  . . , xm; (3) L satisHes the Engel's identity 

o; 
n 

(4) for arbitrary element a E L we have an = O. Then A is nilpotent. 

Clearly there exists an upper  bound for the nilpotency degrees of algebras A 

with these properties. Denote it by g(m, n). 

Proof of Proposition 2: We shall use induction on q, 1 _~ q _< n, to construct 

a sequence of functions h2 -- 1, hi(r, n, t 2 , . . . ,  ti-1), 3 < i < n, and to prove the 

following assertion: 
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Let L be a Lie algebra which is generated by the subset X = { x l , . . .  ,x~} ~ L 

and A an associative algebra such that the commutator Lie algebra A (-) contains 

L and A is generated by L. Assume further that: 

(a) L satisfies the linearized Engel's identity 

= 0, • s . ;  

(b) for arbitrary elements a l , . . . ,  aq • L we have 

~ a a l " " a a ~ - - 0 ,  a • S q ;  

(c) for an arbitrary commutator p on X of length _< hi(r, n, t % . . . ,  t i-1) we have 

p t i = 0 ,  2 < i < q .  

Then A is nilpotent. 

For q = 2 it follows from (b) that for arbitrary z, y E L we have xy + yx = O. 

t2 = 0,1 < i < r (indeed, h2 -= 1). Hence A is The condition (c) implies x i _ _ 

nilpotent of degree _< (t2 - 1)r + 1. 

Now let us assume that the functions h2 , . . . ,  hq-l (r ,n ,  t2 , . . .  , tq-2) have been 

constructed. By induction there exists a function dq-1 (r, n, t 2 , . . . ,  t~-i  ) such that 

any associative algebra satisfying the above conditions with parameters r, n, q - 

1 , t2 , . . .  ,tq-1 is nilpotent of degree < dq-l(r ,n ,  t 2 , . . . , t q_ l ) .  The rest of the 

proof follows [17] almost verbatim. 

Let k = g(rd,n), where d = dq-l(r ,n ,  t2 , . . . , tq -1) .  

Define 

hq(r,n, t2 , . . .  ,tq-1) = 2k-t(k - 2)!. 

We shall show that any associative algebra A satisfying (a), (b), (c) with the 

parameters r, n, q, t2, . . . ,  tq is nilpotent of degree < N = H'(r, k, tq). If A N ~ 0 

then A contains a word w on X of length N such that w is not a linear combination 

of words which are lexicographically less than w. By Lemma 4 either w contains 

a subword utq, u being special of length _< 2k- l (k  - 2)[, or w is k-partitionable. 

Let us consider the first case and let u be the highest word in the commutator 

[u] on X; the weight of u is _< 2k- l (k  - 2)[. By the assumption (c), [u] t, = 0, 

hence ut~ is the linear combination of words which are lexicographically less than 

u t and so is the word w. 
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Now let us suppose that w = w o u l w l . . . u k w h  ui is the highest word in the 

commutator [ui] on X and for any nonidentical permutation a • Sk we have 

W > W O U a ( 1 ) W l  • • • U $ ( k ) W  k .  

Let P be the ground field, consider the associative P-algebra E presented by 

2 = O, eiej  = ejei ,  1 < i , j  < k , E  E + P . 1 .  generators ei, i  > 1, and relations e i _ _ = 

Consider the tensor product A ~ p  E and the element 

k 

U 

i=1 

We shall prove that ( u A )  k = 0 and thus w o u w l u . . . u w k  = 0. This contradicts 

what we have assumed about w. 

By the choice of d any word o~ on X of length >_ d can be presented as 

where the ai i  are commutators on X and the tri are words on X.  

Suppose that there exist such words v l , . . . ,  vk-1 on X that 

u v a u v 2 . . ,  u v k - x u  # O. 

The sequence Vl, . . .  ,Vk_ 1 may be assumed to have a lexicographically mini- 

mal vector of length (dx , . . . ,  dk-x) among all sequences of words which satisfy 

(2). From the lexicographical minimality and (1) it follows that  d~ < d -  1 

for all i,1 < i < k. For a word v = x i ~ ' " x i ~  denote by [vu] the com- 

mutator  [xi, ,  [xi2, [""  [xi, ,  u]]--.]. Again by the lexieographical minimality of 

(da , - . . ,  dk-1) we have 

u v l u - . .  = v k _ l =  = # 0. 

Now remark that  the Lie algebra L ®p E satisfies the n-Engel's identity and, 

besides, for an arbitrary element a E L ®p E C_ A ®p E,  we have aq = a n = 0. 

There are not more than r ~ distinct elements among u, [vl, u] E L ® p E .  Hence by 

Lemma 5 and by the choice of k we have u [ v l u ] . . .  [vk_lu] = 0, a contradiction. 

Now let a Lie algebra L satisfy the conditions of Proposition 2. Then the Lie 

algebra ad(L), together with the associative algebra R ( L )  which is generated by 
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ad(L) in Endp(L), satisfy the assumptions (a), (b), (c). Clearly, the class of 

nilpotency of L is bounded by a function F(r,n, t2,... ,tn). This finishes the 

proof of Proposition 2. | 

Now let G be a finite p-group with an automorphism ~ such that ~ f  = Id 

and for an arbitrary element a • G we have a ~p" -~ ... a~a = 1. Assume further 

that G contains a subset X = {x l , . . .  ,xk} such that the set 

2 = { x , ( . . . ( x % v ) , . . . , v ! , l  < j  < p " -  1,1 < i  < k} 
Y 

1 

generates G. 

For a commutator p on x l , . . .  ,xk ,~  denote by w=(p),w~,(p) the weights of 

p with respect to X and ~ respectively, so wz(p) + wv(p) is the weight of the 

commutator p. 

Let us consider the Cartesian product of integers Z 2 = {(i , j )} with the lexi- 

cographical order: (i,j) > (k,£) whenever i > k or i = k,j  > £. For an arbitrary 

pair (i,j) let Gij be the subgroup of G which is generated by all commutators 

p on X , ~  such that (w~(p),w~(p)) > (i,j) and by all powers pph such that 

(pkwz(p),pkw~,(p)) >_ (i,j). Clearly Ga C_ Ga for ~ < a and (G~, G#) C Ga+# 

for arbitrary a,  ~ E Z 2. 

For a E Z 2 denote by G ,  the subgroup of G generated by all G#'s such that 

> ol. Abelian factors G~/G~ may be viewed as linear spaces over the finite 

field Zp, ]Zpl = p. Following [4, 11, 16] we consider the direct sum 

L(G) = (9 G,~/G,. 
a E Z  2 

Brackets [aaGa,b~G~] = (aa,b~)Ga+~, where aa • Ca, b~ • Gp, define the 

structure of a Lie algebra on L(G). 

LEMMA 6:  

(a) The Lie algebra L(G) satis~es the polynomial identity 

~[ . . - [y ,x , (1)] , . . . ,x , (p. ) ]  = o ,  ~ e sp.; 

(b) Ira e G•,aP' = 1, b = aG~ e L(G) then 

[... [L(G), b], . . . ,  b] = O. 

2p ¢ 
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Proof." (a) Consider the free group F on the free generators y, x0, x l , . . ,  and the 

normal closure F= of the generators x0, Xx,.. .  in F.  Let H be the normal closure 

of the set { U P " , a Y ' " - ' . . . a Y a ,  a E F=}. Denote F ~- F I H ,  F= = ~'=H/H. By 

abuse of notation we shall keep denoting the cosets y t t ,  x i t t  by y, xl respectively. 

Denote by C the normal closure of the element x0 in F: C is generated by x0 

and all commutators containing x0. Consider also the subgroup (C, C)p of C 

generated by commutators (a, b) and powers a~ and a, b are arbitrary elements 

of C. The abelian group V = C/ (C ,  C)p is a linear space over Zp. For an 

arbitrary element x E F denote by :ct the linear transformation of V induced 

by commutation with z, x' : a(C, C)~ -:, (a,:c)(C, C). From the well-known 

commutator formula (z, xy)  = ( z , y ) ( z , x ) ( z , x , y ) i t  follows that for arbitrary 

elements x, y E F we have (xy) ~ = x ~ o y' where a o b = a + b + ab. Clearly 

(3) (x p")' = x '°p" = (1 + :c)'P" - 1 = x 'p". 

For an arbitrary element x E Fz we have (y:c)P" = 1, which implies 

I n 
0 = . . .  = ( V  o o . . .  o 

(2) = [(z + V ) . . . ( 1  + : c ; . ) -  z] p°. 

Let us expand the right side as the sum of monomials in the y', x~. By putting 

:cl = 1 (thus x~ = 0) we see that the sum of all monomials which don't  contain 

:c~ is zero. Hence the sum of all monomials which do contain :c~ is also zero. 

Then in the latter sum we put x2 = 1 and so on. As a result we get that the 

t is zero. The lowest degree sum of all monomials containing each of x~ , . . . ,  xp. 

component of that sum is 

Thus we proved that 

( 3 )  

x~(1) . .- x~(p.). 

y [  ( . . . (x0 , . . . ,x , (p . ) )  = pl . . .p , ,  
~ESp. 

where the pi axe either commutators on #,:co,..., xp. which involve :co at least 

twice, or p-th powers of commutators involving x0, or commutators of degree 

~> pn q_ 2 involving each of x 0 , . . . ,  xp.. 
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In the same way as before (put xa = 1, then put x2 = 1 and so on) we 

may assume all Pa, . . .  ,P= involve each of the generators x0, . . .  ,xp. .  Now the 

assertion (a) immediately follows from (5). 

(b) From (1) it follows that 

pt 
(4)  ( . .  ( x 0 , , ~ l ) , . .  , x l )  = (=o,~1)p~ . . .  p, ,  

where the PJ are either commutators on x0, xl which involves z0 at least twice, 

or p-th powers of commutators involving x0, or commutators of degree > pt + 2. 

Now it suffices to put 

( . . .  ( x 0 , x l ) , . . . , x t )  
pt 

instead of x0 in (4) to finish the proof of the lemma. 

Now let 

t2 = 2.O(X, 1), t3 = 2 . 0 ( X ,  hs(kp",p",t2)), t4 = 2 . 0 ( X ,  ha(kp",p",t2,ts)) 

• . . ,  t ,  = 2" O(X,h, (kp",p", t~ , . . . , t , ,_ , ) ) .  

By Proposition 2 the subalgebra of L(G) generated by ~" is nilpotent of degree 

< s = F(kpn ,p" , t2 , . . .  , t , ) .  Let us show that the group G is nilpotent of class 

<_ s • O(X, s). To do that we shall prove that for any commutator p on )C we 

h a v e  p,m = 1 w h e n e v e r  f " w = ( p )  > s .  O(X, ~ ) .  

Since G is nilpotent it follows that if the pair (pmw=(p),pmw~(p)) is big enough 

then #0" = 1. Now if wx(p) < s then p is the commutator on 3( of weight < s 

whereas p m >  0(.Y, s), so pP" = 1. If wx(p) >_ s then p f '  is a product of elements 

pP.~' the pi being commutators on .~ and I 

(pm',o=(p~),pm',oo¢,,~) > ( p " W = ( p ) , p " W , ( p ) ) .  

Thus ] "  = 1 and Proposition 1 is proved. 

Proof of Theorem l: As we have already remarked in the beginning of the paper 

there exist a normal subgroup H of G of finite index, an element g E G and an 

integer n _> 1 such that for an arbitrary element h E H we have 

(gh) f = h f " - t  h f ' - 2  . . .  h~h = 1. 
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Let X = { Z l , . . .  ,Xk) be an arbitrary finite subset of H,  

) (  = { x i , ( ( . . . ( x i , g ) , g ) , . . . , g ! , l  <_ j < p " -  1 ,1 ,< i <_ k}. 

J 

Since G is periodic we may consider 

t2 = 2.  O(X,  1), t3 = 2 - O ( X ,  h3(kp",p"m,  t2)), 

• . t ,  2 . 0 ( X , h , ( k p  n, ~ t . . .  • , = p , , t , _ , ) ) .  

Let s = F ( k .  p n , p n , t 2 , . . ' , t n )  and consider also O(X,s). Denote by K the 

subgroup of H generated by X. From Proposition I it follows that for an arbitrary 

normal subgroup H1 '~ G of finite index such that H i = H1, the quotient group 

K / K  N H1 is nilpotent of class < s • 0(X, s). Hence K is nilpotent of class 

< s • 0(X, s) and finite. We proved that the subgroup H is locally finite which 

implies that the group G is locally finite as well. 
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